Learning from Imbalanced Data Using Triplet Adversarial Samples
نویسندگان
چکیده
The imbalance of classes in real-world datasets poses a major challenge machine learning and classification, traditional synthetic data generation methods often fail to address this problem effectively. A limitation these is that they tend separate the process generating samples from training process, resulting lack necessary informative characteristics for proper model training. We present new method addresses issue by combining adversarial sample with triplet loss method. This approach focuses on increasing diversity minority class while preserving integrity decision boundary. Furthermore, we show reducing equivalent maximizing area under receiver operating characteristic curve specific conditions, providing theoretical basis effectiveness our In addition, further improve generalization small diverse set optimized using proposed function. evaluated several imbalanced benchmark tasks compared it state-of-the-art techniques, demonstrating can deliver even better performance, making an effective solution problem.
منابع مشابه
Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining
This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...
متن کاملIntrusion Detection Using Incremental Learning from Streaming Imbalanced Data
Most of the network habitats retain on facing an ever increasing number of security threats. In early times, firewalls are used as a security examines point in the network environment. Recently the use of Intrusion Detection System (IDS) has greatly increased due to its more constructive and robust working than firewall. An IDS refers to the process of constantly observing the incoming and outg...
متن کاملMachine Learning from Imbalanced Data Sets
For research to progress most effectively, we first should establish common ground regarding just what is the problem that imbalanced data sets present to machine learning systems. Why and when should imbalanced data sets be problematic? When is the problem simply an artifact of easily rectified design choices? I will try to pick the low-hanging fruit and share them with the rest of the worksho...
متن کاملDetecting Adversarial Samples from Artifacts
Deep neural networks (DNNs) are powerful nonlinear architectures that are known to be robust to random perturbations of the input. However, these models are vulnerable to adversarial perturbations—small input changes crafted explicitly to fool the model. In this paper, we ask whether a DNN can distinguish adversarial samples from their normal and noisy counterparts. We investigate model confide...
متن کاملDetecting representative data and generating synthetic samples to improve learning accuracy with imbalanced data sets
It is difficult for learning models to achieve high classification performances with imbalanced data sets, because with imbalanced data sets, when one of the classes is much larger than the others, most machine learning and data mining classifiers are overly influenced by the larger classes and ignore the smaller ones. As a result, the classification algorithms often have poor learning performa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3262604